
Modeling Dynamic NetworkModeling Dynamic Network 
Systems with State-Contingent 

Penalty FunctionsPenalty Functions

Richard Howitt, Kristiana Hansen
University of California Davis & Universite de LouvainUniversity of California, Davis & Universite de Louvain

CompSus09 Conference
Cornell UniversityCornell University
June 8-12, 2009



The Dynamic Network ProblemThe Dynamic Network Problem
• Solved by restricted optimizing models
• Two decision aspects

– The Network problem- allocation over a 
spatial network within a year

– The Carryover problem- allocation of states  
between years with stochastic supplies

• Dimensionality restrictions usually prevent 
their simultaneous solution

• Optimal spatial dynamic policy requires p p y p y q
joint solution



Current Solution Approaches
• Standard Approach to the Network problem

– Solved by spatial Network Flow Program
St h ti h d l t d b hi t i l– Stochastic hydrology represented by historical 
hydrologic sequences

– Problem.. Spatial monthly allocation is nested within p y
the annual stochastic state allocation problem

• The annual dynamic allocation problem
– Solved by stochastic dynamic programmingSo ed by s oc as c dy a c p og a g
– Synthetic hydrology
– Problem.. The curse of dimensionality prevents a 

realistic spatial specification and dynamic risk andrealistic spatial specification and dynamic risk and 
preferences are hard to specify.



A State-Contingent approach

• Managers operate with limited foresight.
– They know the current stocks and states
– They know the probability of future water year types.

• State Contingent CalibrationState Contingent Calibration.
– Calibrated to reproduce observed behavior for a set 

of water year types.
Observed behavior reflects the effect of agency risk– Observed behavior reflects the effect of agency risk 
and intertemporal preferences

– Having reproduced past water management, we can 
now optimize under alternative scenariosnow optimize under alternative scenarios. 

• Two sets of nonlinear ( quadratic) calibration functions.
M thl f l t ti l lib ti d– Monthly for select spatial calibration nodes

– Annual for storage carryover values



Modeling Approach
• Characterize a small set of (3-5) years classified as a 

given water year type.
U t f b d i l t d fl d t• Use sets of observed or simulated flows and storage 
with an objective function and calibration constraints for 
each year.

• Solve each year and store the lagrangian values for 
nodal and carryover calibration constraints.
Obt i th lib ti l f ti b i• Obtain the calibration value functions by regressing on 
the lagrange values for each set of years in each water 
year type. Impose curvature properties on the estimates.y yp p p p

• Use the calibration values to simulate spatial dynamic 
decisions by solving recursively linked annual 
optimization problems one year Bellman solutionoptimization problems- one year Bellman solution. 



Case Study- The Northern California Water 
networknetwork

• 124 nodes 211 arcs124 nodes, 211 arcs
• 13 reservoirs, 9 groundwater basins

15 U b d d i t 9 i lt l• 15 Urban demand points, 9 agricultural 
demand points.

• 72 years simulated hydrology
• Eight years used for calibration between g y

1960-1980- normal, dry and drought 
years.y



State Contingent Value Functions- Shasta
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Sacramento Valley Water network
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Shasta Storage (KAF)-1960-1965
In-sample calibration 
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Shasta Storage 1980-1993
( Out of Sample)
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T i it St 1980 1993Trinity Storage 1980- 1993
(out of sample)
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O ill St 1980 1993Oroville Storage 1980-1993
(Out of Sample)
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Computation timesComputation times
• Calibration and Estimation time- 3 year types- 8 

years in total–years in total
Desktop Time  14.6 minutes 

• Simulation time desktop – 5.4 minutes/year
average 14 (1980 93) years 1 25 hoursaverage– 14 (1980-93) years 1.25 hours .

S l ti ti bl f t th t tiSolution times are comparable or faster than static 
linear programming network program solutions.



Spatial Dynamic Conclusions
• The contingent calibrated functions are able to 

model spatial dynamic problems using recursive 
ti i tioptimization.

The model reser oir and gro nd ater• The model reservoir and groundwater 
management responds well to different year 
types, particularly drought years.yp , p y g y

• Solution times make recursive optimization p
models a practical tool for dynamic network 
problems. 



Salinity Projections 2004- 2030Sa ty oject o s 00 030

• Sources--- Shoups & Hopmans 2005, Shoups(2004), Orlob(1991), 
S J i V ll D i (1990) “R i b R ”San Joaquin Valley Drainage report(1990) “Rainbow Report”. 

• Average annual net salt increase 499,000 tons
• Change in salt affected area- Shoups (2004)Change in salt affected area Shoups (2004)

0.5% / year- Increase of  240,000 acres (13%) by 2030
• Salinity levels and areas- DWR SJ Valley Drainage Monitoring 

Program 2001- Plate 1.g
• 5 salt levels in shallow saline water. Current salt affected area 1.85 

million acres
• Deep aquifer salinity accumulation Shoups & Hopmans 2005 50% 

percolation– net average aquifer salinity change 2004- 2030—
264mg/L – 343 mg/L. 



Relative change in the shallow groundwater table 

(0.46 - 0.58% /pa-- Shoups 2004).



Saline Affected Areas (DWR 2001)



Field Level Crop Data (DWR)



Interaction of Salinity and cropping



Soil Capacity Class and Electrical Conductivity in Shallow Groundwater CVPM 19



Natural Neighbor InterpolationNatural Neighbor Interpolation



Marginal Effects of Salinity Ordered by Salt Tolerance

Evaluated Separately at Average and by Respective Salinity Zone

Marginal Effects 

Crop

Salt 
Tolerance

dS/m* CVPM 10 CVPM 14 CVPM 15 CVPM 19 CVPM 21

Grapes 1 -0.20%** -1.06%** -8.67%** -0.94% -13.02%

Orchard 1.4 -12.29%** -4.69%** -17.40%** -5.68%** -6.22%

Truck (Lettuce) 1.5 -2.95%* -1.56%* 0.22%* -0.76%* -11.78%

Tomato 1.7 n/a -2.07%* 0.75%* -0.07%** n/a

Grain 4.5 0.60% 1.55%* 3.83%* 2.82%** 6.74%

Sugar Beet 4.7 1.10%* 0.75%* 0.39%** -0.19%** 0.00%

Field 5 2.21%** -0.45%** 0.69% -0.96%* 6.40%

Cotton 5.1 6.30%* 4.57%* 9.30%* 5.80%** 7.80%

Alfalfa 8 5.79%* 2.71%* 4.52%* -0.40%** 6.87%

Fallow n/a -0.30% 0.21% 6.04%** 0.46%* 3.21%

Obtained from http://www agric nsw gov au/reader/wm plants waterquality•Obtained from http://www.agric.nsw.gov.au/reader/wm-plants-waterquality
•*Denotes significance at 5%
•**Denotes significance at 1%



A Multinomial Logit Model of Farmer 
Salinity ResponseSalinity Response
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• 13 Crop groups
• Salinity – Continuous measure of shallow 

groundwater salinity by field
• Soil – Integer 0-7 with decreasing soil quality

A C ti f l• Acres – Continuous measure of parcel area
• Between 4,000 and 10,000 observations per CVPM 

region, approximately 48,000 observations across allregion, approximately 48,000 observations across all 
salinity affected CVPM regions 



Micro-Modeling Region 19
• Kern County California

C l Q i Gi h f• Central Question: Given that farmers 
adjust crop rotations in response to 

li it h t i th ff t f li itsalinity, what is the effect of salinity on 
crop yields in practice?
– Experimental vs. Behavioral 

• Focus on a single region
– 4,700 observations total, 2,400 over saline 

land





Experimental Yield Reduction Function



Behavioral Risk Model
• Focus on 5 crop groups in Kern County, CA 
• Farmers as profit maximizing crop portfolio• Farmers as profit maximizing crop portfolio 

managers
• Model must be scaleable• Model must be scaleable
• Estimate farmer risk aversion

M V framework– M-V framework
– 1980-2005 time series of crop prices and yields 

• Given risk aversion estimate “behavioral rho”Given risk aversion, estimate behavioral rho
– CVPM Region 19, 1998 observed crop proportions
– Given risk aversion, what is the value of rho that ,

leads to observed crop proportions



Estimation of Behavioral Salinity Response Coefficients

Crop Group Behavioral Rho Experimental Rho*
Orchard/Citrus 0.51** unavailable

Grape 0 72** unavailableGrape 0.72** unavailable
Truck 0.61** 2.86
Grain 1.68** 2.90
C tt 2 59** 3 00Cotton 2.59** 3.00

*From VanGenuchten and Gupta 1993
**Robust to salinity bandwidth

Ordering by salt toleranceOrdering by salt tolerance

MAXYieldYi ld
Fundamental Equation:

1 *

MAXYield
cscale

ρ=
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠50c⎜ ⎟
⎝ ⎠



Example of Experimental and Behavioral Salinity Response

Grape Salinity Response
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Example of Experimental and Behavioral Salinity Response

Grain Salinity Response

Behavioral Experimental
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Salinity Modeling ConclusionsSalinity Modeling Conclusions

• Economic response to salinity can be modeledEconomic response to salinity can be modeled 
through deductive and inductive methods

• Micro-modeling over salinity regions to g y g
determines behavioral salt response

• Increased data availability continues to improve y p
results

• Farmer salinity response functions can be used 
to reduce economic impacts of salinity, and 
move toward sustainability. 
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